题目内容
【题目】函数f(x)=x2+ax+3.
(1)当x∈R时,f(x)≥a恒成立,求a的取值范围.
(2)当x∈[﹣2,2]时,f(x)≥a恒成立,求a的取值范围.
【答案】
(1)解:∵x∈R时,有x2+ax+3﹣a≥0恒成立,
须△=a2﹣4(3﹣a)≤0,即a2+4a﹣12≤0,所以﹣6≤a≤2
(2)解:当x∈[﹣2,2]时,设g(x)=x2+ax+3﹣a≥0,
分如下三种情况讨论(如图所示):
①如图(1),当g(x)的图象恒在x轴上方时,满足条件时,有△=a2﹣4(3﹣a)≤0,即﹣6≤a≤2.
②如图(2),g(x)的图象与x轴有交点,
当﹣ ≤﹣2时,g(x)≥0,即 即 解之得a∈Φ.
③如图(3),g(x)的图象与x轴有交点,
﹣ ≥﹣2时,g(x)≥0,即 即 ﹣7≤a≤﹣6
综合①②③得a∈[﹣7,2].
【解析】(1)对一切实数x恒成立,转化为二次函数恒为非负,利用根的判别式小于等于0即可.(2)对于[﹣2,2]区间内的任意x恒成立,同样考虑二次函数的最值问题,按区间与对称轴的关系分三种情况讨,最后结合图象即可解决问题.
【考点精析】本题主要考查了解一元二次不等式的相关知识点,需要掌握求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边才能正确解答此题.
【题目】随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.
年龄(单位:岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年龄45岁为分界点”,由以上统计数据完成下面列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;
年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
赞成 | |||
不赞成 | |||
合计 |
(Ⅱ)若从年龄在[25,35)和[55,65)的被调查人中按照分层抽样的方法选取6人进行追踪调查,并给予其中3人“红包”奖励,求3人中至少有1人年龄在[55,65)的概率.
参考数据如下:
附临界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
的观测值: (其中)