题目内容
20.在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且EB=AB=2,CD=1,(1)求二面角D-AB-C的正切值
(2)求AD与平面ABE所成角的正弦值.
分析 (1)由条件证明AB⊥平面BEDC,可得∠DBC为二面角D-AB-C的平面角.解直角三角形BCD,求得tan∠DBC=$\frac{CD}{BC}$ 的值.
(2)取BE得中点N,则DN⊥BE.由平面和平面垂直的性质可得DN⊥平面ABE,∠DAN即为AD与平面ABE所成角.再根据sin∠DAN=$\frac{DN}{DA}$,求得结果.
解答 解:(1)等腰直角三角形ABC中,∠ABC=90°,∴AB⊥BC.
又BE和CD都垂直于平面ABC,∴AB⊥BE,∴AB⊥平面BEDC,∴∠DBC为二面角D-AB-C的平面角.
直角三角形BCD中,由EB=AB=2,CD=1,可得tan∠DBC=$\frac{CD}{BC}$=$\frac{1}{2}$.
(2)由于DB=DE=$\sqrt{5}$,故△DBE为等腰三角形,取BE得中点N,则DN⊥BE.
由(1)AB⊥平面BEDC,可得平面ABE⊥平面BEDC,且平面ABE和平面BEDC 的交线为BE,
故DN⊥平面ABE,∠DAN即为AD与平面ABE所成角.
sin∠DAN=$\frac{DN}{DA}$=$\frac{2}{\sqrt{{(2\sqrt{2})}^{2}+1}}$=$\frac{2}{3}$.
点评 本题主要考查直线和平面成的角的定义和求法,平面和平面垂直的性质,二面角的平面角的定义和求法,体现了转化的数学思想,属于中档题.
练习册系列答案
相关题目
16.已知F1是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点,过F1且垂直于x轴的直线与双曲线交于A、B两点,E是双曲线的右顶点,若△ABE是钝角三角形,则该双曲线的离心率的取值范围是( )
A. | (1,$\sqrt{3}$) | B. | ($\sqrt{3}$,2) | C. | (2,+∞) | D. | (1,2) |
15.在同一坐标系中,将椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1变换成单位圆的伸缩变换是( )
A. | φ:$\left\{\begin{array}{l}{x′=5x}\\{{y}^{′}=4y}\end{array}\right.$ | B. | φ:$\left\{\begin{array}{l}{{x}^{′}=4x}\\{{y}^{′}=5y}\end{array}\right.$ | ||
C. | φ:$\left\{\begin{array}{l}{{x}^{′}=\frac{1}{4}x}\\{{y}^{′}=\frac{1}{5}y}\end{array}\right.$ | D. | φ:$\left\{\begin{array}{l}{{x}^{′}=\frac{1}{5}x}\\{{y}^{′}=\frac{1}{4}y}\end{array}\right.$ |
10.在△ABC内部随机取一点P,则事件“△PBC”的面积不大于△ABC面积的$\frac{1}{4}$”的概率是( )
A. | $\frac{7}{16}$ | B. | $\frac{9}{16}$ | C. | $\frac{5}{9}$ | D. | $\frac{4}{9}$ |