题目内容
【题目】为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员名,其中种子选手名;乙协会的运动员名,其中种子选手名.从这名运动员中随机选择人参加比赛.
(1)设为事件“选出的人中恰有名种子选手,且这名种子选手来自同一个协会”求事件发生的概率;
(2)设为选出的人中种子选手的人数,求随机变量的分布列和数学期望.
【答案】(1)(2)分布列见解析,
【解析】试题分析:(1)从这名运动员中随机选择人参加比赛有种方法,而事件A包含种方法,最后根据古典概型概率求法得概率(2)先确定随机变量取法为,再利用组合求出对应概率。列表可得分布列,最后根据数学期望公式求期望
试题解析:解:(I)由已知,有,
所以事件发生的概率为
(II)随机变量的所有可能取值为
.
所以,随机变量的分布列为
x | 1 | 2 | 3 | 4 |
P |
随机变量的数学期望
【题目】2017年1月1日,作为贵阳市打造“千园之城”27个示范性公园之一的泉湖公园正式开园.元旦期间,为了活跃气氛,主办方设置了水上挑战项目向全体市民开放.现从到公园游览的市民中随机抽取了60名男生和40名女生共100人进行调查,统计出100名市民中愿意接受挑战和不愿意接受挑战的男女生比例情况,具体数据如图表:
(1)根据条件完成下列列联表,并判断是否在犯错误的概率不超过1%的情况下愿意接受挑战与性别有关?
愿意 | 不愿意 | 总计 | |
男生 | |||
女生 | |||
总计 |
(2)现用分层抽样的方法从愿意接受挑战的市民中选取7名挑战者,再从中抽取2人参加挑战,求抽取的2人中至少有一名男生的概率.
参考数据及公式:
0.1 | 0.05 | 0.025 | 0.01 | |
2.706 | 3.841 | 5.024 | 6.635 |
.
【题目】网络购物已经成为一种时尚,电商们为了提升知名度,加大了在媒体上的广告投入.经统计,近五年某电商在媒体上的广告投入费用x(亿元)与当年度该电商的销售收入y(亿元)的数据如下表:):
年份 | 2012年 | 2013年 | 2014 | 2015 | 2016 |
广告投入x | 0.8 | 0.9 | 1 | 1.1 | 1.2 |
销售收入y | 16 | 23 | 25 | 26 | 30 |
(1)求y关于x的回归方程; (2)2017年度该电商准备投入广告费1.5亿元,
利用(1)中的回归方程,预测该电商2017年的销售收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
,选用数据: ,