题目内容

【题目】已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=

【答案】8
【解析】解:y=x+lnx的导数为y′=1+ , 曲线y=x+lnx在x=1处的切线斜率为k=2,
则曲线y=x+lnx在x=1处的切线方程为y﹣1=2x﹣2,即y=2x﹣1.
由于切线与曲线y=ax2+(a+2)x+1相切,
故y=ax2+(a+2)x+1可联立y=2x﹣1,
得ax2+ax+2=0,
又a≠0,两线相切有一切点,
所以有△=a2﹣8a=0,
解得a=8.
故答案为:8.
求出y=x+lnx的导数,求得切线的斜率,可得切线方程,再由于切线与曲线y=ax2+(a+2)x+1相切,有且只有一切点,进而可联立切线与曲线方程,根据△=0得到a的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网