题目内容
【题目】设圆C满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1,在满足条件①、②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.
【答案】解法一 设圆的圆心为P(a,b),半径为r,则点P到x轴,y轴的距离分别为|b|,|a|。由题设知圆P截x轴所得劣弧所对的圆心角为90°,∴圆P截x轴所得的弦长为r,故r2=2b2。 又圆P截y轴所得的的弦长为2,所以有r2=a2+1。从而得2b2-a2=1。又点P(a,b)到直线x-2y=0的距离为d=,所以5d2=|a-2b|2=a2+4b2-4ab≥a2+4b2-2(a2+b2)=2b2-a2=1,当且仅当a=b时,上式等号成立,从而要使d取得最小值,则应有,解此方程组得或。又由r2=2b2知r=。于是,所求圆的方程是(x-1)2+(y-1)2=2或(x+1)2+(y+1)2=2。------10分
解法二 同解法一得d=,∴a-2b=±d,得a2=4b2±bd+5d2①
将a2=2b2-1代入①式,整理得2b2±4bd+5d2+1="0 " ② 把它看作b的二次方程,由于方程有实根,故判别式非负,即△=8(5d2-1)≥0,得5d2≥1。所以5d2有最小值1,从而d有最小值。将其代入②式得2b2±4b+2=0,解得b=±1。将b=±1代入r2=2b2得r2=2,由r2=a2+1得a=±1。综上a=±1,b=±1,r2=2。由|a-2b|=1知a,b同号。于是,所求圆的方程是(x-1)2+(y-1)2=2或(x+1)2+(y+1)2=2。--------10分
【解析】
试题本题考察的是求圆的方程,圆被轴分成两段圆弧,其弧长的比为,劣弧所对的圆心角为,设圆的圆心为,圆截轴所得的弦长为,截轴所得弦长为2,可得圆心轨迹方程,圆心到直线的距离最小,利用基本不等式,求得圆的方程.
试题解析:设圆心为,半径为.
则到轴、轴的距离分别为和.
由题设知:圆截轴所得劣弧所对的圆心角为,故圆截轴所得弦长为.
∴(6分)
又圆截轴所得弦长为2.
∴.又∵到直线的距离为
(10分)∴.∴.
将代入上式得:.
上述方程有实根,故
,
∴.
将代入方程得.
又∴.
由知、同号.
故所求圆的方程为或.(14分)
【题目】某同学用“五点法”画函数f(x)=Asin(ωx+)(ω>0,| |)在某一个周期内的图象时,列表并填入了部分数据,如下表:
ωx+ | 0 |
| π |
| 2π |
x |
|
| |||
Asin(ωx+) | 0 | 5 | ﹣5 | 0 |
(1)请在答题卡上将如表数据补充完整,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平行移动个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O最近的对称中心.