题目内容
如图,四边形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直线AM与直线PC所成的角为60°.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240341176937318.png)
(1)求证:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求点B到平面MAC的距离.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240341176937318.png)
(1)求证:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求点B到平面MAC的距离.
(1)详见解析;(2)
;(3)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034117708502.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034117693427.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034117708502.png)
试题分析:(1)先根据线面垂直的判定定理证PC⊥平面ABC,即可证得PC⊥AC。(2)用空间向量法求二面角。先过C作BC的垂线,建立空间直角坐标系,再求各点的坐标,和各向量的坐标,再根据向量垂直的数量积公式求面的法向量,但需注意两法向量所成的角和二面角相等或互补。(3)在(2)中已求出面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034117724553.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034117755315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034117771772.png)
试题解析:解:(1)证明:∵PC⊥BC,PC⊥AB,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034117771608.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034117802622.png)
(2)在平面ABC内,过C作BC的垂线,并建立空间直角坐标系如图所示.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240341178029450.png)
设P(0,0,z),则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034117818436.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240341178641369.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240341178801790.png)
且z>0,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034117896675.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034117911760.png)
设平面MAC的一个法向量为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034117927258.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034117942809.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240341179581209.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034117974819.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034117989707.png)
平面ABC的一个法向量为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034118005424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240341180201113.png)
显然,二面角M﹣AC﹣B为锐二面角,∴二面角M﹣AC﹣B的余弦值为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034117693427.png)
(3)点B到平面MAC的距离
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034118052831.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目