题目内容
【题目】已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,
=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )
A.2
B.3
C.![]()
D.![]()
【答案】B
【解析】解:设直线AB的方程为:x=ty+m,点A(x1 , y1),B(x2 , y2),
直线AB与x轴的交点为M(m,0),
由
y2﹣ty﹣m=0,根据韦达定理有y1y2=﹣m,
∵
=2,∴x1x2+y1y2=2,
结合
及
,得
,
∵点A,B位于x轴的两侧,∴y1y2=﹣2,故m=2.
不妨令点A在x轴上方,则y1>0,又
,
∴S△ABO+S△AFO=
=
×2×(y1﹣y2)+
×
y1 ,
=
.
当且仅当
,即
时,取“=”号,
∴△ABO与△AFO面积之和的最小值是3,故选B.![]()
可先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及
=2消元,最后将面积之和表示出来,探求最值问题.
练习册系列答案
相关题目
【题目】某单位共有10名员工,他们某年的收入如下表:
员工编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年薪(万元) | 4 | 4.5 | 6 | 5 | 6.5 | 7.5 | 8 | 8.5 | 9 | 51 |
(1)求该单位员工当年年薪的平均值和中位数;
(2)从该单位中任取2人,此2人中年薪收入高于7万的人数记为
,求
的分布列和期望;
(3)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元,5.5万元,6万元,8.5万元,预测该员工第五年的年薪为多少?
附:线性回归方程
中系数计算公式分别为:
,
,其中
为样本均值.