题目内容

【题目】已知数列{an}满足an+1+an=4n﹣3,n∈N*
(1)若数列{an}是等差数列,求a1的值;
(2)当a1=﹣3时,求数列{an}的前n项和Sn
(3)若对任意的n∈N* , 都有 ≥5成立,求a1的取值范围.

【答案】
(1)解:∵an+1+an=4n﹣3,n∈N*,∴a2+a1=1,a3+a2=5,

∴a3﹣a1=5﹣1=4,设等差数列{an}的公差为d,则2d=4,解得d=2.

∴2a1+2=1,解得a1=﹣


(2)解:∵an+1+an=4n﹣3,an+2+an+1=4n+1,∴an+2﹣an=4,a2=4.

∴数列{an}的奇数项与偶数项分别成等差数列,公差都为4.

∴a2k1=﹣3+4(k﹣1)=4k﹣7;a2k=4+4(k﹣1)=4k.

∴an=

∴当n为偶数时,Sn=(a1+a2)+…+(an1+an)=﹣3+9+…+(4n﹣3)= =

当n为奇数时,Sn=Sn+1﹣an+1= ﹣2(n+1)=

∴Sn=


(3)解:由(2)可知:an=

当n为奇数时,an=2n﹣2+a1,an+1=2n﹣1﹣a1

≥5成立,an+1+an=4n﹣3,可得: ﹣a1≥﹣4n2+16n﹣10,

令f(n)=﹣4n2+16n﹣10=﹣4(n﹣2)2+6,当n=1或3时,[f(n)]max=2,∴ ﹣a1≥2,解得a1≥2或a1≤﹣1.

当n为偶数时,an=2n﹣3﹣a1,an+1=2n+a1

≥5成立,an+1+an=4n﹣3,可得: +3a1≥﹣4n2+16n﹣12,

令g(n)=﹣4n2+16n﹣12=﹣4(n﹣2)2+4,当n=2时,[f(n)]max=4,∴ +3a1≥4,解得a1≥1或a1≤﹣4.

综上所述可得:a1的取值范围是(﹣∞,﹣4]∪[2,+∞).


【解析】(1)由an+1+an=4n﹣3,n∈N* , 可得a2+a1=1,a3+a2=5,相减可得a3﹣a1=5﹣1=4,设等差数列{an}的公差为d,可得2d=4,解得d.(2)由an+1+an=4n﹣3,an+2+an+1=4n+1,可得an+2﹣an=4,a2=4.可得数列{an}的奇数项与偶数项分别成等差数列,公差都为4.对n分类讨论利用等差数列的求和公式即可得出.(3)由(2)可知:an= .当n为奇数时,an=2n﹣2+a1 , an+1=2n﹣1﹣a1 , 由 ≥5成立,an+1+an=4n﹣3,可得: ﹣a1≥﹣4n2+16n﹣10,令f(n)=﹣4n2+16n﹣10,求出其最大值即可得出.当n为偶数时,同理可得.
【考点精析】通过灵活运用等差关系的确定和数列的前n项和,掌握如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即=d ,(n≥2,n∈N)那么这个数列就叫做等差数列;数列{an}的前n项和sn与通项an的关系即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网