题目内容

【题目】已知函数f(x)=x2﹣kx+(2k﹣3).
(1)若k= 时,解不等式f(x)>0;
(2)若f(x)>0对任意x∈R恒成立,求实数k的取值范围;
(3)若函数f(x)两个不同的零点均大于 ,求实数k的取值范围.

【答案】
(1)解:若k= 时,f(x)=x2 x.

由f(x)>0,得x2 x>0,即x(x﹣ )>0

∴不等式f(x)>0的解集为{x|x<0或x> }


(2)解:∵f(x)>0对任意x∈R恒成立,

则△=(﹣k)2﹣4(2k﹣3)<0,

即k2﹣8k+12<0,解得k的取值范围是2<k<6.


(3)解:若函数f(x)两个不同的零点均大于

则有

解得

∴实数k的取值范围是(6,


【解析】(1)由k的值,得到f(x)解析式,由此得到大于0的解集.(2)由f(x)>0恒成立,得到判别式小于0恒成立.(3)由两个不同的零点,得到判别式△>0,由两点均大于 ,得到对称轴大于 ,和f( )>0.
【考点精析】解答此题的关键在于理解二次函数的性质的相关知识,掌握当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减.

练习册系列答案
相关题目

【题目】实验杯足球赛采用七人制淘汰赛规则,某场比赛中一班与二班在常规时间内战平,直接进入点球决胜环节,在点球决胜环节中,双方首先轮流罚点球三轮,罚中更多点球的球队获胜;若双方在三轮罚球中未分胜负,则需要进行一对一的点球决胜,即双方各派处一名队员罚点球,直至分出胜负;在前三轮罚球中,若某一时刻胜负已分,尚未出场的队员无需出场罚球(例如一班在先罚球的情况下,一班前两轮均命中,二班前两轮未能命中,则一班、二班的第三位同学无需出场).由于一班同学平时踢球热情较高,每位队员罚点球的命中率都能达到0.8,而二班队员的点球命中串只有0.5,比赛时通过抽签决定一班在每一轮都先罚球.

(1)定义事件为“一班第三位同学没能出场罚球”,求事件发生的概率;

(2)若两队在前三轮点球结束后打平,则进入一对一点球决胜,一对一球决胜由没有在之前点球大战中出场过的队员主罚点球,若在一对一点球决胜的某一轮中,某对队员射入点球且另一队员未能射入,则比赛结束;若两名队员均射入或者均射失点球,则进行下一轮比赛. 若直至双方场上每名队员都已经出场罚球,则比赛亦结束,双方通过抽签决定胜负,本场比赛中若已知双方在点球大战,以随机变量记录双方进行一对一点球决胜的轮数,求的分布列与数学期望.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网