题目内容

【题目】已知数列{an}的前n项和为Sn , 且Sn= +
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=an+2﹣an+ ,且数列{bn}的前n项和为Tn , 求证:Tn<2n+

【答案】
(1)解:当n≥2时,

an=Sn﹣Sn1

= +

=n+1,

又n=1时,

a1=S1=2适合an=n+1,

∴an=n+1


(2)证明:由(1)知:

bn=n+3﹣(n+1)+

=2+ ×( ),

∴Tn=b1+b2+b3+…+bn

=2n+ ×( + +…+

=2n+ ×( +

<2n+


【解析】(1)根据数列的通项an和Sn的关系,即可求解数列{an}的通项公式;(2)由bn=2+ ),即可利用裂项相消求解数列的和,得以证明.
【考点精析】认真审题,首先需要了解数列的前n项和(数列{an}的前n项和sn与通项an的关系),还要掌握数列的通项公式(如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网