题目内容
11.设S是由满足下列两个条件的实数所构成的集合:①1∉S;②若a∈S,则$\frac{1}{1-a}$∈S.请解答下列问题:
(1)若2∈S,则S中必有另外两个数,求出这两个数;
(2)求证:若a∈S且a≠0,则1-$\frac{1}{a}$∈S;
(3)集合S能否只含有一个元素?若能,求出这个元素;若不能,请说明理由.
分析 (1)由2∈S知$\frac{1}{1-2}$=-1∈S,从而可得$\frac{1}{1+1}$=$\frac{1}{2}$∈S;
(2)由a∈S知 $\frac{1}{1-a}$∈S,从而可证明1-$\frac{1}{a}$∈S;
(3)由(1)知,a∈S,$\frac{1}{1-a}$∈S,1-$\frac{1}{a}$∈S;再说明三个数不相等即可.
解答 解:(1)∵2∈S,
∴$\frac{1}{1-2}$=-1∈S,
∴$\frac{1}{1+1}$=$\frac{1}{2}$∈S;
∴S中其他两个数为-1,$\frac{1}{2}$;
(2)证明:∵a∈S,
∴$\frac{1}{1-a}$∈S,
∴$\frac{1}{1-\frac{1}{1-a}}$=1-$\frac{1}{a}$∈S.
(3)解:由(1)知,a∈S,$\frac{1}{1-a}$∈S,1-$\frac{1}{a}$∈S;
若a=$\frac{1}{1-a}$,则a2-a+1=0,无解;
故a≠$\frac{1}{1-a}$;
同理可证明:a≠1-$\frac{1}{a}$,1-$\frac{1}{a}$≠$\frac{1}{1-a}$;
故集合S中至少有三个不同的元素.
点评 本题考查了元素与集合的关系的判断与应用,属于中档题.
练习册系列答案
相关题目
1.若函数f(x)=(x2+bx+b)$\sqrt{1-2x}$(b∈R)在区间(0,$\frac{1}{3}$)上单调递增,则b的取值范围为( )
A. | (-∞,$\frac{1}{9}$] | B. | [$\frac{1}{9}$,+∞) | C. | (-∞,$\frac{1}{9}$) | D. | ($\frac{1}{9}$,+∞) |