题目内容
【题目】在棱长为1的正方体中,点分别是棱的中点,是侧面内一点,若∥平面,则线段长度的取值范围是( )
A. B. C. D.
【答案】B
【解析】
分析:首先确定点P的轨迹,然后利用几何体的结构特征整理计算即可求得最终结果.
详解:分别取棱BB1、B1C1的中点M、N,连接MN,
∵M、N、E、F为所在棱的中点,
∴MN∥BC1,EF∥BC1,
∴MN∥EF.
∵MN平面AEF,EF平面AEF,
∴MN∥平面AEF.
∵AA1∥NE,AA1=NE,
∴四边形AENA1为平行四边形,
∴A1N∥AE.
∵A1N平面AEF,AE平面AEF,
∴A1N∥平面AEF.
∵A1N∩MN=N,
∴平面A1MN∥平面AEF.
∵P是侧面BCC1B1内一点,A1P∥平面AEF,
∴P必在线段MN上.
∵在Rt△A1B1M中,A1B1=1,,
∴,
同理可得在Rt△A1B1N中,
∴△A1MN是等腰三角形.
当P在MN中点O时A1P⊥MN,此时A1P最短,P位于M、N处时A1P最长.
∵在Rt△B1MN中,,
∴.
∵点O是MN中点,
∴.
∵在Rt△A1MO中,,
∴.
∵,
∴线段A1P长度的取值范围是.
本题选择B选项.
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了至月份每月号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期 | 月日 | 月日 | 月日 | 月日 | 月日 | 月日 |
昼夜温差 | ||||||
就诊人数(个) | 16 |
该兴趣小组确定的研究方案是:先从这六组数据中选取组,用剩下的组数据求线性回归方程,再用被选取的组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是月与月的两组数据,请根据至月份的数据,求出 关于的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过人,则认为得到的线性回归方程是理想的,试问(2)中所得线性回归方程是否理想?
参考公式:
img src="http://thumb.zyjl.cn/questionBank/Upload/2018/08/07/18/7f4fe67a/SYS201808071848019525920497_ST/SYS201808071848019525920497_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,
【题目】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高 气温 | [10, 15) | [15, 20) | [20, 25) | [25, 30) | [30, 35) | [35, 40) |
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列.
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?