题目内容
【题目】如图:在四棱锥中,底面为菱形,且, 底面,
, , 是上点,且平面.
(1)求证: ;(2)求三棱锥的体积.
【答案】(1)见解析;(2).
【解析】试题分析:(1)根据菱形性质得对角线相互垂直,根据底面得,再根据线面垂直判定定理得面即可得结果(2)记与的交点为,则BD 为高,三角形POE为底,根据锥体体积公式求体积
试题解析:(1)面
(2)记与的交点为,连接
平面
在中: , , ,
在中: , ,则,即,
则
【题型】解答题
【结束】
21
【题目】已知椭圆: 的离心率,且其的短轴长等于.
(1)求椭圆的标准方程;
(2)如图,记圆: ,过定点作相互垂直的直线和,直线(斜率)与圆和椭圆分别交于、两点,直线与圆和椭圆分别交于、两点,若与面积之比等于,求直线的方程.
【答案】(1);(2)
【解析】试题分析:(1)根据题意可列关于a,b,C的方程组,解得, ,(2)先利用坐标表示面积之比: ,联立直线方程与圆或椭圆方程,解得交点横坐标,代入化简可得直线斜率,即得直线的方程.
试题解析:(1), ,
得到, ,椭圆的标准方程为:
(2)直线的方程为: ,联立,得到,
得到,用取代得到
联立,得到,得到
用取代得到(由几何性质也知为直径,横坐标互为相反数)
即 ,得到
即,直线的方程为:
练习册系列答案
相关题目
【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x与相应的生产能耗y的几组对照数据
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程.(其中, ).