题目内容

若a>0,b>0,且函数f(x)=4x3-ax2-2bx-2在x=1处有极值,则ab的最大值为(  )
A.2B.3C.6D.9
D
函数的导数为f′(x)=12x2-2ax-2b,函数在x=1处有极值,则有f′(1)=12-2a-2b=0,即a+b=6,所以6=a+b≥2,即ab≤9,当且仅当a=b=3时取等号,选D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网