题目内容

是数列的前项和,对任意都有成立, (其中是常数).
(1)当时,求
(2)当时,
①若,求数列的通项公式;
②设数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是“数列”.
如果,试问:是否存在数列为“数列”,使得对任意,都有
,且.若存在,求数列的首项的所
有取值构成的集合;若不存在,说明理由.
(1)=;(2)①;②存在,首项的所有取值构成的集合为.

试题分析:(1)要求,大多数时候要先求,本题实质就是有关系式,那么我们可以用,两式相减,可得出的关系,本题正好得到数列是等比数列,故易求得;(2) 实质上的关系式是,这让我们联想到数列是等差数列,这里难点就在于证明是等差数列,证明方法是把等式中的换得到一个式子,两式相减可得,此式中含有常数,故再一次用代换此式中的,两式相减可消去得数列的连续三项的关系,可证得是等差数列,那么这里①的通项公式易求;对于②这类问题总是假设存在,然后去求,假设存在时,可知数列公差是2,即,由于它是“数列”,故任意两项和还是数列中的项,即,可得是偶数,又由,得,娵,从而,下面对的值一一验证是否符合已知条件
试题解析:(1)当时,由
                      ①
去代得,,   ②
②—①得,
在①中令得,,则0,∴
∴数列是以首项为1,公比为3的等比数列,
=
(2)当时,
,                          ③
去代得,, ④
④—③得,      ,     ⑤
去代得,,      ⑥
⑥—⑤得,,即
∴数列是等差数列.∵
∴公差,∴
易知数列是等差数列,∵,∴.
是“数列”,得:对任意,必存在使

,故是偶数,
又由已知,,故
一方面,当时,,对任意
都有
另一方面,当时,

,则,不合题意.
时,,则

时,

,∴
所以,首项的所有取值构成的集合为
(其他解法,可根据【解】的评分标准给分)的关系,求;(2)等差数列的通项公式,前项和.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网