题目内容
数列
中,已知
,
时,
.数列
满足:
.
(1)证明:
为等差数列,并求
的通项公式;
(2)记数列
的前
项和为
,若不等式
成立(
为正整数).求出所有符合条件的有序实数对
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910021485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910099371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910115435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910130832.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910146491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240319101621047.png)
(1)证明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910146491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910146491.png)
(2)记数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910208751.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910224297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910240388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910255986.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910271435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910302563.png)
(1)通项公式
,(2) 有序实数对![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910318644.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910302542.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910318644.png)
试题分析:(1)由等差数列的定义证明,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910115435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910349477.png)
(2)利用(1)的结论, 可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910364539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910380759.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910240388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910411692.png)
试题解析:(Ⅰ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910115435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240319104421016.png)
代入
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910458830.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240319105981715.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910708471.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910723291.png)
通项公式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910302542.png)
(Ⅱ)由(Ⅰ)得,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910754870.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910380759.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240319107701229.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240319107862475.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240319108011163.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910817994.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240319108321154.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910848386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910864862.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910879442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910895913.png)
综上,存在符合条件的所有有序实数对
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910910491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031910318644.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目