题目内容

【题目】如图,边长为2的正方形ACDE所在的平面与平面ABC垂直,ADCE的交点为M,且AC=BC.

1)求证:平面EBC

2)求二面角的大小.

【答案】1)祥见解析;(2)

【解析】试题分析:由已知四边形是正方形,知其两条对角线互相垂直平分,且,又因为平面平面平面,故可以以点为原点,以过点平行于的直线为轴,分别以直线轴和轴,建立如图所示的空间直角坐标系;又因为正方形ACDE的边长为2,且三角形ABC是以角C为直角的直角三角形,从而就可以写出点ABCE及点M的空间直角坐标;则(1)求出向量的坐标,从而可证,这样就可证明直线AM与平面EBC内的两条相交直线垂直,故得直线AM与平面EBC垂直;(2)由(1)知是平面EBC的一个法向量,其坐标已求,再设平面EAB的一个法向量为,则由,可求得平面EAB的一个法向量;从而可求出所求二面角的两个面的法向量夹角的余弦值,由图可知所求二面角为锐二面角,故二面角的余弦值等于两个面的法向量夹角余弦值的绝对值,从而就可求得所求二面角的大小.另本题也可用几何方法求解证明.

试题解析:四边形是正方形 ,

平面平面平面

可以以点为原点,以过点平行于的直线为轴,

分别以直线轴和轴,建立如图所示的空间直角坐标系

,则

是正方形的对角线的交点,

(1)

平面

(2) 设平面的法向量为,则

,则, 则

为平面的一个法向量,且

设二面角的平面角为,则

二面角等于

1) ,(2)均可用几何法

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网