题目内容

【题目】(10分)设分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程

实根的个数(重根按一个计).

)求方程有实根的概率;

)求的分布列和数学期望;

)求在先后两次出现的点数中有5的条件下,方程有实根的概率.

【答案】

【解析】本试题主要考查了古典概型概率的计算,以及分布列和数学期望的求解的综合运用。

(1)中理解本题是一个等可能事件的概率,试验发生包含的基本事件总数为6×6=36,那么借助于使方程有实根=b2-4c0,得到事件A发生的基本事件数,得到概率值。

(2)利用ξ=0,1,2的可能取值,分别得到各个取值的概率值,然后写出分布列和数学期望值

(3)分析在先后两次出现的点数中有5的条件下,方程x2+bx+c=0有实根,这是一个条件概率,利用条件概率公式得到结论。

解:(I)由题意知,本题是一个等可能事件的概率,

试验发生包含的基本事件总数为6×6=36,

满足条件的事件是使方程有实根,则=b2-4c0,即.

下面针对于c的取值进行讨论

当c=1时,b=2,3,4,5,6; 当c=2时,b=3,4,5,6;

当c=3时,b=4,5,6; 当c=4时,b=4,5,6;

当c=5时,b=5,6; 当c=6时,b=5,6,

目标事件个数为5+4+3+3+2+2=19,

因此方程有实根的概率为
(II)由题意知用随机变量ξ表示方程实根的个数得到

ξ=0,1,2 根据第一问做出的结果得到

∴ξ的分布列为

∴ξ的数学期望

(III)在先后两次出现的点数中有5的条件下,方程x2+bx+c=0有实根,

这是一个条件概率,

先后两次出现的点数中有5为事件M,

方程有实根为事件N,

则,

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网