题目内容
【题目】已知某企业的近3年的前7个月的月利润(单位:百万元)如下面的折线图所示:
(1)试问这3年的前7个月中哪个月的月平均利润较高?
(2)通过计算判断这3年的前7个月的总利润的发展趋势;
(3)试以第3年的前4个月的数据(如下表),用线性回归的拟合模式估测第3年8月份的利润.
月份x | 1 | 2 | 3 | 4 |
利润y(单位:百万元) | 4 | 4 | 6 | 6 |
相关公式: = = , = ﹣ x.
【答案】
(1)解:由折线图可知5月和6月的平均利润最高
(2)解:第1年前7个月的总利润为1+2+3+5+6+7+4=28(百万元),第2年前7个月的总利润为2+5+5+4+5+5+5=31(百万元),
第3年前7个月的总利润为4+4+6+6+7+6+8=41百万元),
所以这3年的前7个月的总利润呈上升趋势
(3)解:∵ , ,1×4+2×4+3×6+4×6=54,
∴ ,
∴ ,
∴ ,
当x=8时, (百万元),
∴估计8月份的利润为940万元
【解析】(1)结合图象读出结论即可;(2)根据图象累加判断结论即可(3)分别求出对应的系数 , 的值,代入回归方程即可.
【题目】为研究男女同学空间想象能力的差异,孙老师从高一年级随机选取了20名男生、20名女生,进行空间图形识别测试,得到成绩茎叶图如下,假定成绩大于等于80分的同学为“空间想象能力突出”,低于80分的同学为“空间想象能力正常”.
(1)完成下面2×2列联表,
空间想象能力突出 | 空间想象能力正常 | 合计 | |
男生 |
|
| |
女生 |
| ||
合计 |
|
(2)判断是否有90%的把握认为“空间想象能力突出”与性别有关;
(3)从“空间想象能力突出”的同学中随机选取男生2名、女生2名,记其中成绩超过90分的人数为ξ,求随机变量ξ的分布列和数学期望. 下面公式及临界值表仅供参考:
P(X2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |