题目内容

10.平面内,点P在以O为顶点的直角内部,A,B分别为两直角边上两点,已知$|{\overrightarrow{OP}}|=2$,$\overrightarrow{OP}•\overrightarrow{OA}=2$,$\overrightarrow{OP}•\overrightarrow{OB}=1$,则当|AB|最小时,sin∠AOP=(  )
A.$\sqrt{2}$B.$\frac{{\sqrt{2}}}{2}$C.2D.$\frac{1}{2}$

分析 由题意画出图形,设$<\overrightarrow{OA},\overrightarrow{OP}>=θ$(0$<θ<\frac{π}{2}$),利用已知可得|AB|=$\frac{1}{cosθ}+\frac{1}{sinθ}=\frac{sinθ+cosθ}{sinθcosθ}$,换元后可得当$θ=\frac{π}{4}$时,|AB|最小,则答案可求.

解答 解:如图,

设$<\overrightarrow{OA},\overrightarrow{OP}>=θ$(0$<θ<\frac{π}{2}$),则$<\overrightarrow{OP},\overrightarrow{OB}>=\frac{π}{2}-θ$,
∵$|{\overrightarrow{OP}}|=2$,$\overrightarrow{OP}•\overrightarrow{OA}=2$,$\overrightarrow{OP}•\overrightarrow{OB}=1$,
∴$2|\overrightarrow{OA}|cosθ=2,2|\overrightarrow{OB}|cos(\frac{π}{2}-θ)=2$,
则$|\overrightarrow{OA}|=\frac{1}{cosθ},|\overrightarrow{OB}|=\frac{1}{sinθ}$,
则|AB|=$\frac{1}{cosθ}+\frac{1}{sinθ}=\frac{sinθ+cosθ}{sinθcosθ}$,
令sinθ+cosθ=t,则t=$\sqrt{2}sin(θ+\frac{π}{4})$,
∵0$<θ<\frac{π}{2}$,∴t∈(1,$\sqrt{2}$].
sinθcosθ=$\frac{{t}^{2}-1}{2}$,
∴|AB|=$\frac{t}{\frac{{t}^{2}-1}{2}}=\frac{2t}{{t}^{2}-1}=\frac{2}{t-\frac{1}{t}}$,
∴当t=$\sqrt{2}$时,|AB|有最小值,此时$θ=\frac{π}{4}$.
∴sin∠AOP=$\frac{\sqrt{2}}{2}$.
故选:B.

点评 本题考查平面向量数量积运算,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网