题目内容
【题目】在平面直角坐标系中,已知椭圆:的焦距为2,且过点.
(1)求椭圆的方程;
(2)设椭圆的上顶点为,右焦点为,直线与椭圆交于,两点,问是否存在直线,使得为的垂心,若存在,求出直线的方程:若不存在,说明理由.
【答案】(1)(2)存在,
【解析】
(1)把点的坐标代入椭圆方程,利用椭圆中的关系和已知,可以求出椭圆方程;
(2)设直线的方程,与椭圆方程联立,根据一元二次方程根与系数关系,结合已知和斜率公式,可以求出直线的方程.
解:(1)由已知可得:解得,,,
所以椭圆:.
(2)由已知可得,,,∴,∵,
设直线的方程为:,代入椭圆方程整理得
,设,,
则,,
∵,∴.
即,
因为,,
即.
.
所以,或.
又时,直线过点,不合要求,所以.
故存在直线:满足题设条件.
练习册系列答案
相关题目