题目内容
(.(本题满分12分)
已知二次函数
和“伪二次函数”
(
、
、![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181110670246.gif)
),
(I)证明:只要
,无论
取何值,函数
在定义域内不可能总为增函数;
(II)在二次函数
图象上任意取不同两点
,线段
中点的横坐标为
,记直线
的斜率为
,
(
i)求证:
;
(ii)对于“伪二次函数”
,是否有(i)同样的性质?证明你的结论.
已知二次函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181110561595.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181110577494.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181110608322.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181110623188.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181110655191.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181110670246.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181110748278.gif)
(I)证明:只要
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181110764235.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181110655191.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181110811379.gif)
(II)在二次函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181110561595.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181110873547.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181110889230.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181110904204.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181110889230.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181110951193.gif)
(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082318111096772.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181110982420.gif)
(ii)对于“伪二次函数”
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181110998613.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181111013220.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181111154345.gif)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181111201923.gif)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181111216233.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181111232511.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181111247267.gif)
则函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181111263274.gif)
(II)(i)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231811112791101.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181111341395.gif)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181111357497.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181111372525.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181110982420.gif)
(ii)不妨设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181111403241.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231811114351511.gif)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181111450680.gif)
由(ⅰ)中(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181111481691.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181111497465.gif)
比较(3)( 4)两式得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181111513590.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181111544235.gif)
即:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181111559643.gif)
不妨令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181111575500.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181111669517.gif)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181111684635.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231811117001146.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082318111171572.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181111731246.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181111747410.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181111762402.gif)
∴ (5)式不可能成立,(4)式不可能成立,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181111778470.gif)
∴“伪二次函数”
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181111809658.gif)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目