题目内容
已知椭圆经过点,对称轴为坐标轴,焦点在轴上,离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)求的角平分线所在直线的方程;
(Ⅲ)在椭圆上是否存在关于直线对称的相异两点?
若存在,请找出;若不存在,说明理由.
(Ⅰ)求椭圆的方程;
(Ⅱ)求的角平分线所在直线的方程;
(Ⅲ)在椭圆上是否存在关于直线对称的相异两点?
若存在,请找出;若不存在,说明理由.
(1)(2)(3)不存在满足题设条件的点B和C.
有关解析几何的问题,常常涉及曲线的方程,此时往往要注意利用有关曲线的定义来解决,同时还会涉及直线与有关曲线的交点问题,在处理过程中往往需要结合二次方程的根与系数的关系解决
(I)设椭圆E的方程为,
将A(2,3)代入上式,得
∴椭圆E的方程为
(II)解法1:由(I)知,所以直线AF1的方程为:直线AF2的方程为:由点A在椭圆E上的位置知,直线l的斜率为正数.设上任一点,则
若(因其斜率为负,舍去).
所以直线l的方程为:
解法2:
(III)解法1:
假设存在这样的两个不同的点
由于M在l上,故 ①
又B,C在椭圆上,所以有两式相减,得
即将该式写为,并将直线BC的斜率和线段BC的中点,表示代入该表达式中,得 ②
①×2—②得,即BC的中点为点A,而这是不可能的.
∴不存在满足题设条件的点B和C.
解法2:假设存在,则
得一元二次方程则是该方程的两个根,由韦达定理得于是∴B,C的中点坐标为又线段BC的中点在直线
即B,C的中点坐标为(2,3),与点A重合,矛盾.∴不存在满足题设条件的相异两点.
(I)设椭圆E的方程为,
将A(2,3)代入上式,得
∴椭圆E的方程为
(II)解法1:由(I)知,所以直线AF1的方程为:直线AF2的方程为:由点A在椭圆E上的位置知,直线l的斜率为正数.设上任一点,则
若(因其斜率为负,舍去).
所以直线l的方程为:
解法2:
(III)解法1:
假设存在这样的两个不同的点
由于M在l上,故 ①
又B,C在椭圆上,所以有两式相减,得
即将该式写为,并将直线BC的斜率和线段BC的中点,表示代入该表达式中,得 ②
①×2—②得,即BC的中点为点A,而这是不可能的.
∴不存在满足题设条件的点B和C.
解法2:假设存在,则
得一元二次方程则是该方程的两个根,由韦达定理得于是∴B,C的中点坐标为又线段BC的中点在直线
即B,C的中点坐标为(2,3),与点A重合,矛盾.∴不存在满足题设条件的相异两点.
练习册系列答案
相关题目