题目内容
在直角坐标系xOy中,椭圆C1:
="1" (a>b>0)的左、右焦点分别为F1、F2, F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
.
(1)求C1的方程;
(2)直线l∥OM,与C1交于A、B两点,若
·
=0,求直线l的方程.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105424645.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105424337.png)
(1)求C1的方程;
(2)直线l∥OM,与C1交于A、B两点,若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105455351.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105455356.png)
(1)
.(2)直线l的方程为y=
x-2
,或y=
x+2
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105471641.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105502312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105517293.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105502312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105517293.png)
试题分析:(1)由C2:y2=4x,知F2(1,0),设M(x1,y1),M在C2上,因为|MF2|=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105424337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105424337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105783353.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105798480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105814773.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105829970.png)
解得a=2(a=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105845279.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105471641.png)
(2)因为l∥OM,所以l与OM的斜率相同.故l的斜率k=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105876566.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105502312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105502312.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240101059391097.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105954483.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105970586.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105455351.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105455356.png)
=7·
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010106017586.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105954483.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010106048289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010106063313.png)
故所求直线l的方程为y=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105502312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105517293.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105502312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010105517293.png)
点评:难题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题求椭圆标准方程时,主要运用了椭圆的几何性质,通过布列方程,达到解题目的。本题(2)在利用韦达定理的基础上,借助于向量垂直,向量的数量积为0,得到了m的方程。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目