题目内容

【题目】记集合A={(x,y)|x2+y2≤16}和集合B={(x,y)|x+y﹣4≤0,x≥0,y≥0}表示的平面区域分别为Ω1 , Ω2 , 若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2的概率为

【答案】
【解析】解:由题意可得A表示圆心为原点半径为4的圆及其内部,
由圆的面积公式可得Ω1的面积S=π×42=16π,
集合B表示的平面区域为两直角边都为4的直角三角形,
∴由三角形的面积公式可得Ω2的面积S′= ×4×4=8,
∴点M落在区域Ω2的概率P= =
所以答案是:
【考点精析】关于本题考查的几何概型,需要了解几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网