题目内容
18.用定义法证明函数f(x)=2x3-6x2+7在(0,2)上单调递减.分析 根据减函数的定义,设x1,x2∈(0,2),且x1<x2,通过作差f(x1)-f(x2),通过立方差、平方差公式,及提取公因式的方法证明f(x1)>f(x2)即可.
解答 证明:设x1,x2∈(0,2),且x1<x2,则:
f(x1)-f(x2)=$2({{x}_{1}}^{3}-{{x}_{2}}^{3})-6({{x}_{1}}^{2}-{{x}_{2}}^{2})$=$2({x}_{1}-{x}_{2})[({{x}_{1}}^{2}-2{x}_{1})+({{x}_{2}}^{2}-2{x}_{2})+\frac{{x}_{1}{x}_{2}-2{x}_{1}}{2}+\frac{{x}_{1}{x}_{2}-2{x}_{2}}{2}]$
=2(x1-x2)[x1(x1-2)+x2(x2-2)$+\frac{{x}_{1}({x}_{2}-2)}{2}+\frac{{x}_{2}({x}_{1}-2)}{2}$];
∵x1,x2∈(0,2),且x1<x2;
∴x1-x2<0,x1-2<0,x2-2<0,x1(x1-2)+x2(x2-2)$+\frac{{x}_{1}({x}_{2}-2)}{2}+\frac{{x}_{2}({x}_{1}-2)}{2}$<0;
∴f(x1)>f(x2);
∴f(x)在(0,2)上单调递减.
点评 本题考查减函数的定义,利用定义证明一个函数为减函数的方法与过程,立方差、平方差公式,在作差时可考虑提取公因式x1-x2.
练习册系列答案
相关题目
7.某同学利用图形计算器研究教材中一例问题“设点A、B的坐标分别为(-5,0)、(5,0),直线AM、BM相交于M,且它们的斜率之积为$-\frac{4}{9}$.求点M的轨迹方程”时,将其中的已知条件“斜率之积为$-\frac{4}{9}$”拓展为“斜率之积为常数k(k≠0)”之后,进行了如图所示的作图探究:
参考该同学的探究,下列结论错误的是( )
参考该同学的探究,下列结论错误的是( )
A. | k>0时,点M的轨迹为焦点在x轴的双曲线(不含与x轴的交点) | |
B. | -1<k<0时,点M的轨迹为焦点在x轴的椭圆(不含与x轴的交点) | |
C. | k<-1时,点M的轨迹为焦点在y轴的椭圆(不含与x轴的交点) | |
D. | k<0时,点M的轨迹为椭圆(不含与x轴的交点) |