题目内容

【题目】数列{an}满足a1=2,an+1=an2+6an+6(n∈N×
(1)设Cn=log5(an+3),求证{Cn}是等比数列;
(2)求数列{an}的通项公式;
(3)设bn= ,数列{bn}的前n项和为Tn , 求证:﹣ ≤Tn<﹣

【答案】
(1)解:由an+1=an2+6an+6得an+1+3=(an+3)2

=2 ,即cn+1=2cn

∴{cn}是以2为公比的等比数列.


(2)解:又c1=log55=1,

∴cn=2n1,即 =2n1

∴an+3=

故an= ﹣3


(3)解:∵bn= = ,∴Tn= =﹣

又0< =

∴﹣ ≤Tn<﹣


【解析】(1)由已知可得,an+1+3=(an+3)2 , 利用构造法令Cn=log5(an+3),则可得 ,从而可证数列{cn}为等比数列;(2)由(1)可先求数列cn , 代入cn=log5(an+3)可求an;(3)把(2)中的结果代入整理可得, ,则代入Tn=b1+b2+…+bn相消可证
【考点精析】关于本题考查的等比关系的确定和数列的前n项和,需要了解等比数列可以通过定义法、中项法、通项公式法、前n项和法进行判断;数列{an}的前n项和sn与通项an的关系才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网