题目内容
【题目】在Rt△ABC中,∠C=90°,AC=4,BC=2,D是BC的中点,那么( ﹣ ) =;若E是AB的中点,P是△ABC(包括边界)内任一点.则 的取值范围是
【答案】2;[﹣9,9]
【解析】解:∵在Rt△ABC中,∠C=90°,AC=4,BC=2,D是BC的中点,那么 = , = + =16+4=20. ∴ = = = =2.
以CA所在的直线为x轴,以CB所在的直线为y轴,建立平面直角坐标系,则A的坐标为(4,0),B的坐标为(0,2),
由线段的中点公式可得点D的坐标为(0,1),点E的坐标为(2,1),设点P的坐标为(x,y),
则由题意可得可行域为△ABC及其内部区域,故有 .
令t= =(﹣4,1)(x﹣2,y﹣1)=7﹣4x+y,即 y=4x+t﹣7.
故当直线y=4x+t﹣7过点A(4,0)时,t取得最小值为7﹣16+0=﹣9,
当直线y=4x+t﹣7过点B(0,2)时,t取得最大值为 7﹣0+2=9,
故t= 的取值范围是[﹣9,9],
所以答案是 2,[﹣9,9].
练习册系列答案
相关题目