题目内容
【题目】已知椭圆与x轴负半轴交于,离心率.
(1)求椭圆C的方程;
(2)设直线与椭圆C交于两点,连接AM,AN并延长交直线x=4于两点,若,直线MN是否恒过定点,如果是,请求出定点坐标,如果不是,请说明理由.
【答案】(1)(2)直线恒过定点,详见解析
【解析】
(1)依题意由椭圆的简单性质可求出,即得椭圆C的方程;
(2)设直线的方程为:,联立直线的方程与椭圆方程可求得点的坐标,同理可求出点的坐标,根据的坐标可求出直线的方程,将其化简成点斜式,即可求出定点坐标.
(1)由题有,.∴,∴.∴椭圆方程为.
(2)设直线的方程为:,则
∴或,∴,同理,
当时,由有.∴,同理,又
∴,
当时,∴直线的方程为
∴直线恒过定点,当时,此时也过定点..
综上:直线恒过定点.
练习册系列答案
相关题目