题目内容
【题目】如图,在直三棱柱中,,,,,分别是,的中点.
(1)求证:平面平面;
(2)求证:平面;
(3)求三棱锥的体积.
【答案】(1)证明见解析;(2)证明见解析;(3).
【解析】
(1)由直三棱柱侧棱与底面垂直可得,结合已知,得到平面,从而得到平面平面;
(2)取的中点,连接,.由三角形中位线定理可得,且,得到四边形为平行四边形,进一步得到.由线面平行的判定得到平面;
(3)由已知求解直角三角形得到,求得底面积,代入三棱锥体积公式求得三棱锥的体积.
解析:(1)证明:在三棱柱中,
底面,所以.
又因为,,
所以平面,
又平面,
所以平面平面
(2)证明:取的中点,连接,.
因为,,分别是,,的中点,
所以,且,.
因为,且,所以,且,
所以四边形为平行四边形,所以.
又因为平面,平面,所以平面.
(3)因为,,,所以.
所以三棱锥的体积
.
练习册系列答案
相关题目
【题目】为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为120的样本,测量树苗高度(单位:,经统计,其高度均在区间,内,将其按,,,,,,,,,,,分成6组,制成如图所示的频率分布直方图.其中高度为及以上的树苗为优质树苗.
(1)求图中的值,并估计这批树苗的平均高度(同一组中的数据用该组区间的中点值作代表);
(2)已知所抽取的这120棵树苗来自于,两个试验区,部分数据如下列联表:
试验区 | 试验区 | 合计 | |
优质树苗 | 20 | ||
非优质树苗 | 60 | ||
合计 |
将列联表补充完整,并判断是否有的把握认为优质树苗与,两个试验区有关系,并说明理由.
下面的临界值表仅供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中.