题目内容
【题目】已知椭圆Γ: 的右焦点为F,过点F且斜率为k的直线与椭圆Γ交于A(x1, y1)、B(x2, y2)两点(点A在x轴上方),点A关于坐标原点的对称点为P,直线PA、PB分别交直线l:x=4于M、N两点,记M、N两点的纵坐标分别为yM、yN.
(1) 求直线PB的斜率(用k表示);
(2) 求点M、N的纵坐标yM、yN (用x1, y1表示) ,并判断yM yN是否为定值?若是,请求出该定值;若不是,请说明理由.
【答案】(1)(2)–9
【解析】试题分析:(1)设直线AB方程为,联立方程,利用根与系数的关系得, ,表示kPB=即可;(2)设直线的方程为,表示出 ,整理化简即可.
试题解析:
(1)设直线AB方程为,
联立,消去,得,
因为、,且,
又,所以kPB=,
(2)又直线的方程为,则,
由题意可知, ,直线的方程为y+y1= (x+x1),
则,
,yMyN===–9,
综上,乘积yMyN为定值–9.
【题目】新鲜的荔枝很好吃,但摘下后容易变黑,影响卖相.某大型超市进行扶贫工作,按计划每年六月从精准扶贫户中订购荔枝,每天进货量相同且每公斤20元,售价为每公斤24元,未售完的荔枝降价处理,以每公斤16元的价格当天全部处理完.根据往年情况,每天需求量与当天平均气温有关.如果平均气温不低于25摄氏度,需求量为公斤;如果平均气温位于摄氏度,需求量为公斤;如果平均气温位于摄氏度,需求量为公斤;如果平均气温低于15摄氏度,需求量为公斤.为了确定6月1日到30日的订购数量,统计了前三年6月1日到30日各天的平均气温数据,得到如图所示的频数分布表:
平均气温 | ||||||
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
(Ⅰ)假设该商场在这90天内每天进货100公斤,求这90天荔枝每天为该商场带来的平均利润(结果取整数);
(Ⅱ)若该商场每天进货量为200公斤,以这90天记录的各需求量的频率作为各需求量发生的概率,求当天该商场不亏损的概率.