题目内容
【题目】已知函数f(x)=Asin( )(A>0,ω>0,)的部分图象如图所示.若横坐标分别为-1、1、5的三点M,N,P都在函数f(x)的图象上,则sin∠MNP的值为( )
A. B. C. D.
【答案】D
【解析】
根据图象,可得函数的最小正周期T=8,结合周期公式得ω.再根据f(1)=1是函数的最大值,列式可解出φ的值,得到函数f(x)的解析式进而得出M、N、P三点的坐标,结合两点的距离公式得到MN、PN、PM的长,用余弦定理算出cos∠MNP的值,最后用同角三角函数平方关系,可得sin∠MNP的值.
由图可知,最小正周期T=(3﹣1)×4=8,所以ω.
又∵当x=1时,f(x)有最大值为1,
∴f(1)=sin(φ)=1,得φ2kπ,k∈Z
∵φ,∴取k=0,得φ.
所以函数的解析式为f(x)=sin(x).
∵f(﹣1)=0,f(1)=1且f(5)=sin(5)=﹣1.
∴三点坐标分别为M(﹣1,0),N(1,1),P(5,﹣1),
由两点的距离公式,得|MN|,|PN|=2,|MP|,
∴根据余弦定理,得cos∠MNP.
∵∠MNP∈(0,π)
∴sin∠MNP是正数,得sin∠MNP
故选:D
【题目】已知某中学共有高一学生800人.在一次数学与地理的水平测试则试后,学校决定利用随机数表法从中抽取100人进行成绩抽样分析,先将800人按001,002,…,800进行编号.
(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;
(下面摘取了随机数表的第7行到第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100人的数学与地理的水平测试成绩如下表:
人数 | 数学 | |||
优秀 | 良好 | 及格 | ||
地理 | 优秀 | 7 | 20 | 5 |
良好 | 9 | 18 | 6 | |
及格 | 4 |
成绩分为优秀、良好、及格三个等级;横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的人数共有.
①若在该样本中,数学成绩优秀率是30%,求,的值:
②在地理成绩及格的学生中,已知,,求数学成绩优秀的人数比及格的人数少的概率.
【题目】厦门市从2003年起每年都举行国际马拉松比赛,每年马拉松比赛期间,都会吸引许多外地游客到厦门旅游,这将极大地推进厦门旅游业的发展,旅游部门将近六年马拉松比赛期间外地游客数量统计如下表:
年份 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 |
比赛年份编号 | ||||||
外地游客人数(万人) |
(1)若用线性回归模型拟合与的关系,求关于的线性回归方程;(精确到)
(2)若用对数回归模型拟合与的关系,可得回归方程,且相关指数,请用相关指数说明选择哪个模型更合适.(精确到)
参考数据:,,,;
参考公式:回归方程中,,;相关指数.
【题目】某地区年至年农村居民家庭人均纯收入(单位:千元)的数据如表:
年份 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
年份代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入 | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求关于的线性回归方程;
(2)利用(1)中的回归方程,分析年至年该地区农村居民家庭人纯收入的变化情况,并预测该地区年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
.
参考数据:.