题目内容
【题目】在全球关注的抗击“新冠肺炎”中,某跨国科研中心的一个团队,研制了甲、乙两种治疗“新冠肺炎”新药,希望知道哪种新药更有效,为此进行动物试验,试验方案如下:
第一种:选取共10只患病白鼠,服用甲药后某项指标分别为:;
第二种:选取共10只患病白鼠,服用乙药后某项指标分别为:;
该团队判定患病白鼠服药后这项指标不低于85的确认为药物有效,否则确认为药物无效.
(1)已知第一种试验方案的10个数据的平均数为89,求这组数据的方差;
(2)现需要从已服用乙药的10只白鼠中随机抽取7只,记其中服药有效的只数为,求的分布列与期望;
(3)该团队的另一实验室有1000只白鼠,其中900只为正常白鼠,100只为患病白鼠,每用新研制的甲药给所有患病白鼠服用一次,患病白鼠中有变为正常白鼠,但正常白鼠仍有变为患病白鼠,假设实验室的所有白鼠都活着且数量不变,且记服用次甲药后此实验室正常白鼠的只数为.
(i)求并写出与的关系式;
(ii)要使服用甲药两次后,该实验室正常白鼠至少有950只,求最大的正整数的值.
【答案】(1)6.2(2)见解析,(3),(i)(ii)
【解析】
(1)利用题设数据及方差的定义求解即可;
(2)利用超几何概型的概率公式计算概率,列分布列,即得解.
(3)(i)依题设知,即得解;
(ii),代入,构造函数即得解.
(1)方差
(2)在第二种试验中服药有效的白鼠有4只,服药无效的白鼠有6只,
故的可能取值为1,2,3,4
,,
,,
因此的分布列为
1 | 2 | 3 | 4 | |
(3)(ⅰ)
依题设知,
即
(ⅱ),
由可得
记函数,其中,
则函数在上单调递减,
且,
故最大的正整数
【题目】共享单车的投放,方便了市民短途出行,被誉为中国“新四大发明”之一.某市为研究单车用户与年龄的相关程度,随机调查了100位成人市民,统计数据如下:
不小于40岁 | 小于40岁 | 合计 | |
单车用户 | 12 | 18 | 30 |
非单车用户 | 38 | 32 | 70 |
合计 | 50 | 50 | 100 |
(1)从独立性检验角度分析,能否有以上的把握认为该市成人市民是否为单车用户与年龄是否小于40岁有关;
(2)将此样本的频率做为概率,从该市单车用户中随机抽取3人,记不小于40岁的单车用户的人数为,求的分布列与数学期望.
下面临界值表供参考:
P() | 0.15 | 0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中)