题目内容
【题目】已知函数若存在实数,满足,则的最大值是____.
【答案】.
【解析】分析: 根据函数f(x)图象判断a,b,c关系即范围,用c表示出af(a)+bf(b)+cf(c),根据函数单调性求出最大值.
详解: 作出f(x)的函数图象如图所示:
∵存在实数a<b<c,满足f(a)=f(b)=f(c),
∴a+b=﹣6,
∴af(a)+bf(b)+cf(c)=(a+b+c)f(c)=(c﹣6)lnc,
由函数图象可知:<c<e2,
设g(c)=(c﹣6)lnc,则=lnc+1﹣,
显然在(,e2]上单调递增,
∵=2﹣<0,=3﹣>0,
∴在(,e2]上存在唯一一个零点,不妨设为c0,
在g(c)在(,c0)上单调递减,在(c0,e2]上单调递增,
又g()=(﹣6)<0,g(e2)=2(e2﹣6)>0,
∴g(c)的最大值为g(e2)=2e2﹣12.
故答案为:2e2﹣12
点睛: (1)本题有三个关键点,其一是能够很熟练准确地画出函数的图像;其二是从图像里能发现a+b=-6, <c<e2;其三是能够想到构造函数g(c)=(c﹣6)lnc,利用导数求函数的最大值.(2)本题要求函数的图像和性质掌握的比较好,属于中档题.
【题目】某次考试,班主任从全班同学中随机抽取一个容量为8的样本,他们的数学物理分数对应如下表:
学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学分数 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理分数 | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
绘出散点图如下:
根据以上信息,判断下列结论:
①根据此散点图,可以判断数学成绩与物理成绩具有线性相关关系;
②根据此散点图,可以判断数学成绩与物理成绩具有一次函数关系;
③甲同学数学考了80分,那么,他的物理成绩一定比数学只考了60分的乙同学的物理成绩要高.
其中正确的个数为( ).
A.0B.3C.2D.1