题目内容

7.已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.求M的轨迹方程.

分析 圆C的方程可化为x2+(y-4)2=16,由此能求出圆心为C(0,4),半径为4,设M(x,y),则$\overrightarrow{CM}$=(x,y-4),$\overrightarrow{MP}$=(2-x,2-y).由题设知$\overrightarrow{CM}$•$\overrightarrow{MP}$=0,由此能求出M的轨迹方程.

解答 解:圆C的方程可化为x2+(y-4)2=16,
所以圆心为C(0,4),半径为4.
设M(x,y),则$\overrightarrow{CM}$=(x,y-4),$\overrightarrow{MP}$=(2-x,2-y).
由题设知$\overrightarrow{CM}$•$\overrightarrow{MP}$=0,…..(6分)
故x(2-x)+(y-4)(2-y)=0,即(x-1)2+(y-3)2=2.
由于点P在圆C的内部,所以M的轨迹方程是(x-1)2+(y-3)2=2.…..(12分)

点评 本题考查点的轨迹方程的求法,考查圆的求法,解题时要认真审题,注意圆的方程和性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网