题目内容

【题目】已知函数f(x)=x2(ex+ex)﹣(2x+1)2(e2x+1+e2x1),则满足f(x)>0的实数x的取值范围为(
A.(﹣1,﹣
B.(﹣∞,﹣1)
C.(﹣ ,+∞)
D.(﹣∞,﹣1)∪(﹣ ,+∞)

【答案】A
【解析】解:设g(x)=x2(ex+ex),则由f(x)>0,得g(x)>g(2x+1),
∵g(﹣x)=g(x),∴g(x)为偶函数,
当x≥0时,g′(x)=2x(ex+ex)+x2(ex﹣ex)≥0,
∴函数g(x)在[0,+∞)上为增函数,
则由g(x)>g(2x+1),得|x|>|2x+1|,
解得:﹣1
故选:A.
【考点精析】本题主要考查了函数的值域的相关知识点,需要掌握求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网