题目内容
【题目】函数f(x)=是定义在R上的奇函数,且f(1)=1.
(1)求a,b的值;
(2)判断并用定义证明f(x)在(+∞)的单调性.
【答案】(1)a=5,b=0; (2)见解析.
【解析】
(1)根据函数为奇函数,可利用f(1)=1和f(-1)=-1,解方程组可得a、b值,然后进行验证即可;(2)根据函数单调性定义利用作差法进行证明.
(1)根据题意,f(x)=是定义在R上的奇函数,且f(1)=1,
则f(-1)=-f(1)=-1,
则有,解可得a=5,b=0;经检验,满足题意.
(2)由(1)的结论,f(x)=,
设<x1<x2,
f(x1)-f(x2)=-=,
又由<x1<x2,则(1-4x1x2)<0,(x1-x2)<0,
则f(x1)-f(x2)>0,
则函数f(x)在(,+∞)上单调递减.
练习册系列答案
相关题目