题目内容

【题目】如图,已知六棱锥PABCDEF的底面是正六边形,PA⊥平面ABCPAAB,则下列结论正确的是_____.(填序号)①PBAD;②平面PAB⊥平面PBC;③直线BC∥平面PAE;④sinPDA

【答案】

【解析】

由题意,分别根据线面位置关系的判定定理和性质定理,逐项判定,即可得到答案.

PA⊥平面ABC,如果PBAD,可得ADAB,但是ADAB60°,∴①不成立,

AAGPBG,如果平面PAB⊥平面PBC,可得AGBC,∵PABC,∴BC⊥平面PAB,∴BCAB,矛盾,所以②不正确;

BCAE是相交直线,所以BC一定不与平面PAE平行,所以③不正确;

RtPAD中,由于AD2AB2PA,∴sinPDA,所以④正确;

故答案为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网