题目内容
【题目】在△ABC中,a,b,c分别是角A,B,C的对边,且(a+b+c)(a+b﹣c)=3ab.
(Ⅰ)求角C的值;
(Ⅱ)若c=2,且△ABC为锐角三角形,求a+b的取值范围.
【答案】解:(Ⅰ)△ABC中,(a+b+c)(a+b﹣c)=3ab,
∴a2+b2﹣c2=ab,
由余弦定理得,cosC= = ;
又∵C∈(0,π),
∴C= ;
(Ⅱ)由c=2,C= ,根据正弦定理得,
= = = = ,
∴a+b= (sinA+sinB)
= [sinA+sin( ﹣A)]
=2 sinA+2cosA
=4sin(A+ );
又∵△ABC为锐角三角形,
∴ ,
解得 <A< ;
∴ <A+ < ,
∴2 <4sin(A+ )≤4,
综上,a+b的取值范围是(2 ,4]
【解析】(Ⅰ)化简(a+b+c)(a+b﹣c)=3ab,利用余弦定理求得C的值;(Ⅱ)由正弦定理求出a+b的解析式,利用三角恒等变换化简,根据题意求出A的取值范围,从而求出a+b的取值范围.
【考点精析】根据题目的已知条件,利用余弦定理的定义的相关知识可以得到问题的答案,需要掌握余弦定理:;;.
练习册系列答案
相关题目
【题目】已知某产品的广告费用x(单位:万元)与销售额y(单位:万元)具有线性关系关系,其统计数据如下表:
x | 3 | 4 | 5 | 6 |
y | 25 | 30 | 40 | 45 |
由上表可得线性回归方程 = x+ ,据此模型预报广告费用为8万元时的销售额是( )
附: = ; = ﹣ x.
A.59.5
B.52.5
C.56
D.63.5