题目内容
【题目】已知直线l的参数方程为 (0≤α<π,t为参数),曲线C的极坐标方程为ρ= .
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;
(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.
【答案】解:(Ⅰ)由ρ= 得ρsin2θ=4cosθ得,ρ2sin2θ=4ρcosθ,
即曲线C的直角坐标方程为y2=4x,
故切线C是抛物线;
(Ⅱ)由直线l经过点(1,0)和(0,1),所以其方程为x+y=1.
故直线l的直角坐标方程是x+y﹣1=0,
联立 ,消去y,得x2﹣6x+1=0,
则xA+xB=6,
又点(1,0)是抛物线的焦点,
由抛物线定义,得弦长|AB|=xA+xB+2=6+2=8
【解析】(Ⅰ)将原极坐标方程ρ= 两边同时乘以ρ,利用极坐标与直角坐标之间的关系即可得出其直角坐标方程;(Ⅱ)将直线l的参数方程化为直角坐标方程,再代入曲线C的标准方程:y2=4x得:x2﹣6x+1=0,利用直线l经过点(1,0),即可得到直线l被曲线C截得的线段AB的长.
【题目】共享单车进驻城市,绿色出行引领时尚,某市有统计数据显示,2016年该市共享单车用户年龄等级分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示,若将共享单车用户按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”,使用次数为5次或不足5次的称为“不常使用单车用户”,已知在“经常使用单车用户”中有 是“年轻人”.
(Ⅰ)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,补全下列2×2列联表,并根据列联表的独立性检验,判断能有多大把握可以认为经常使用共享单车与年龄有关?
使用共享单车情况与年龄列联表
年轻人 | 非年轻人 | 合计 | |
经常使用共享单车用户 | 120 | ||
不常使用共享单车用户 | 80 | ||
合计 | 160 | 40 | 200 |
(Ⅱ)将频率视为概率,若从该市市民中随机任取3人,设其中经常使用共享单车的“非年轻人”人数为随机变量X,求X的分布列与期望.
(参考数据:
P(K2≥k0) | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
其中,K2= ,n=a+b+c+d)