题目内容
【题目】对于函数y=3sin(2x+ ),
(1)求振幅、初相和最小正周期;
(2)简述此函数图象是怎样由函数y=sinx的图象作变换得到的.
【答案】
(1)解:对于函数y=3sin(2x+ ),它的振幅为3,初相为 ,最小正周期为 =π
(2)解:把函数y=sinx的图象向左平移 个单位,可得y=sin(x+ )的图象;
再把横坐标变为原来的 倍,可得y=sin(2x+ )的图象;
再把纵坐标变为原来的3倍,可得y=3sin(2x+ )的图象
【解析】y=Asin(ωx+φ)的图象变换规律,再根据y=Asin(ωx+φ)的振幅、周期、初相的定义,得出结论.
【考点精析】关于本题考查的函数y=Asin(ωx+φ)的图象变换,需要了解图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象才能得出正确答案.
【题目】2015年12月,华中地区数城市空气污染指数“爆表”,此轮污染为2015年以来最严重的污染过程,为了探究车流量与的浓度是否相关,现采集到华中某城市2015年12月份某星期星期一到星期日某一时间段车流量与的数据如表:
时间 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
车流量(万辆) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
的浓度(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)由散点图知与具有线性相关关系,求关于的线性回归方程;(提示数据: )
(2)(I)利用(1)所求的回归方程,预测该市车流量为12万辆时的浓度;(II)规定:当一天内的浓度平均值在内,空气质量等级为优;当一天内的浓度平均值在内,空气质量等级为良,为使该市某日空气质量为优或者为良,则应控制当天车流量不超过多少万辆?(结果以万辆为单位,保留整数)参考公式:回归直线的方程是,其中, .