题目内容
【题目】已知函数(其中,为常数且)在处取得极值.
(Ⅰ)当时,求的单调区间;
(Ⅱ)若在上的最大值为1,求的值.
【答案】(Ⅰ)单调递增区间为,;单调递减区间为; (Ⅱ)或.
【解析】试题分析:(Ⅰ)由函数的解析式,可求出函数导函数的解析式,进而根据是的一个极值点,可构造关于,的方程,根据求出值;可得函数导函数的解析式,分析导函数值大于0和小于0时,的范围,可得函数的单调区间;
(Ⅱ)对函数求导,写出函数的导函数等于0的的值,列表表示出在各个区间上的导函数和函数的情况,做出极值,把极值同端点处的值进行比较得到最大值,最后利用条件建立关于的方程求得结果.
试题解析:
(Ⅰ)因为,所以,
因为函数在处取得极值,
当时,,,
由,得或;由,得,
即函数的单调递增区间为,;单调递减区间为.
(Ⅱ)因为,
令,,,
因为在处取得极值,所以,
当时,在上单调递增,在上单调递减,
所以在区间上的最大值为,
令,解得,
当,,
当时,在上单调递增,上单调递减,上单调递增,
所以最大值1可能的在或处取得,而 ,
所以,解得;
当时,在区间上单调递增,上单调递减,上单调递增,
所以最大值1可能在或处取得,
而,
所以,
解得,与矛盾.
当时,在区间上单调递增,在上单调递减,
所最大值1可能在处取得,而,矛盾.
综上所述,或.
【题目】一台机器使用时间较长,但还可以使用.它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器运转的速度而变化,如表为抽样试验结果:
转速x(转/秒) | 16 | 14 | 12 | 8 |
每小时生产有 缺点的零件数y(件) | 11 | 9 | 8 | 5 |
(1)用相关系数r对变量y与x进行相关性检验;
(2)如果y与x有线性相关关系,求线性回归方程;
(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么,机器的运转速度应控制在什么范围内?(结果保留整数)
参考数据:,,.
参考公式:相关系数计算公式:,回归方程中斜率和截距的最小二乘估计公式分别为:,.