题目内容

【题目】已知函数f(x)=lnx﹣a(x﹣1),g(x)=ex(Ⅰ)若函数f(x)在区间(0,9]为增函数,求实数a的取值范围;
(Ⅱ)当a≠0时,过原点分别作曲线y=f(x)与y=g(x)的切线l1 , l2 , 已知两切线的斜率互为倒数,证明: <a<

【答案】解:(Ⅰ)由f(x)=lnx﹣a(x﹣1)得, f′(x)= ﹣a=
∵函数f(x)在区间(0,9]为增函数,
∴f′(x)≥0在区间(0,9]恒成立,
≥0在区间(0,9]恒成立,
∴a≤ ,而 =
∴a∈(﹣∞, ];
(Ⅱ)证明:设切线l2的方程为y=k2x,切点为(x2 , y2),则y2=ex2
k2=g′(x2)=ex2=
所以x2=1,y2=e,则k2=e.
由题意知,切线l1的斜率为k1= = ,l1的方程为y= x;
设l1与曲线y=f(x)的切点为(x1 , y1),则k1=f′(x1)= ﹣a= =
所以y1= =1﹣ax1 , a=
又因为y1=lnx1﹣a(x1﹣1),消去y1和a后,
整理得lnx1﹣1+ =0.
令m(x)=lnx﹣1+ =0,
则m′(x)= = ,m(x)在(0,1)上单调递减,在(1,+∞)上单调递增.
若x1∈(0,1),因为m( )=﹣2+e﹣ >0,m(1)=﹣ <0,所以x1∈( ,1),
而a= 在x1∈( ,1)上单调递减,所以 <a<
若x1∈(1,+∞),因为m(x)在(1,+∞)上单调递增,且m(e)=0,则x1=e,
所以a= =0(舍去).
综上可知, <a<
【解析】(Ⅰ)求出函数的导数,问题转化为即 ≥0在区间(0,9]恒成立,即a≤ ,求出a的范围即可;(Ⅱ)设切线l2的方程为y=k2x,从而由导数及斜率公式可求得切点为(1,e),k2=e;再设l1的方程为y= x;设l1与曲线y=f(x)的切点为(x1 , y1),从而可得y1= =1﹣ax1 , a= ;结合y1=lnx1﹣a(x1﹣1)可得lnx1﹣1+ =0,再令m(x)=lnx﹣1+ ,从而求导确定函数的单调性,从而确定 <a< ,问题得证.
【考点精析】掌握利用导数研究函数的单调性是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网