题目内容

【题目】已知圆E:x2+(y﹣ 2= 经过椭圆C: + =1(a>b>0)的左右焦点F1 , F2 , 且与椭圆C在第一象限的交点为A,且F1 , E,A三点共线,直线l交椭圆C于M,N两点,且 (λ≠0)
(1)求椭圆C的方程;
(2)当三角形AMN的面积取得最大值时,求直线l的方程.

【答案】
(1)解:如图圆E经过椭圆C的左右焦点F1,F2

∴c2+(0﹣ 2= ,解得c=

∵F1,E,A三点共线,∴F1A为圆E的直径,则|AF1|=3,

∴AF2⊥F1F2,∴ = =9﹣8=1,

∵2a=|AF1|+|AF2|=3+1=4,∴a=2

由a2=b2+c2得,b=

∴椭圆C的方程是


(2)解:由(1)得点A的坐标( ,1),

(λ≠0),∴直线l的斜率为kOA=

则设直线l的方程为y= x+m,设M(x1,y1),N(x2,y2),

得,

∴x1+x2= ,x1x2=m2﹣2,

且△=2m2﹣4m2+8>0,解得﹣2<m<2,

∴|MN|= |x2﹣x1|=

= =

∵点A到直线l的距离d= =

∴△AMN的面积S= =

= =

当且仅当4﹣m2=m2,即m= ,直线l的方程为


【解析】(1)由题意把焦点坐标代入圆的方程求出c,再由条件得F1A为圆E的直径求出|AF1|=3,根据勾股定理求出|AF2|,根据椭圆的定义和a2=b2+c2依次求出a和b的值,代入椭圆方程即可;(2)由(1)求出A的坐标,根据向量共线的条件求出直线OA的斜率,设直线l的方程和M、N的坐标,联立直线和椭圆方程消去y,利用韦达定理和弦长公式求出|MN|,由点到直线的距离公式求出点A到直线l的距离,代入三角形的面积公式求出△AMN的面积S的表达式,化简后利用基本不等式求出面积的最大值以及对应的m,代入直线l的方程即可.
【考点精析】解答此题的关键在于理解椭圆的标准方程的相关知识,掌握椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网