题目内容
【题目】已知椭圆的左、右焦点分别为、,且,椭圆经过点.
(1)求椭圆的方程;
(2)直线过椭圆右顶点,交椭圆于另一点,点在直线上,且.若,求直线的斜率.
【答案】(1);(2).
【解析】
(1)利用椭圆的定义可求得的值,利用可求得的值,进而可求得椭圆的方程;
(2)设直线的方程为,将该直线的方程与椭圆的方程联立,求出点的坐标,由题中条件求出点的坐标,由得出,据此计算出实数的值,进而可求得直线的斜率.
(1)易知点,由椭圆的定义得,
,,
因此,椭圆的方程为;
(2)由题意可知,直线的斜率存在,且斜率不为零,
设直线的方程为,设点,
联立,消去得,则,,
所以,点的坐标为,
,则,可得,所以,点的坐标为,
,则,
,,
所以,,解得,
因此,直线的斜率为.
练习册系列答案
相关题目
【题目】“中国式过马路”存在很大的交通安全隐患,某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如图的列联表.已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是.
(1)求列联表中的,的值;
男性 | 女性 | 合计 | |
反感 | 10 | ||
不反感 | 8 | ||
合计 | 30 |
(2)根据列联表中的数据,判断是否有95%把握认为反感“中国式过马路”与性别有关?
临界值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
参考公式:,