题目内容
【题目】在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为;直线l的参数方程为(t为参数).直线l与曲线C分别交于M,N两点.
(1)写出曲线C的直角坐标方程和直线l的普通方程;
(2)若点P的极坐标为,,求的值.
【答案】(1),;(2)2.
【解析】
(1)由得,求出曲线的直角坐标方程.由直线的参数方程消去参数,即求直线的普通方程;
(2)将直线的参数方程化为标准式(为参数),代入曲线的直角坐标方程,韦达定理得,点在直线上,则,即可求出的值.
(1)由可得,
即,即,
曲线的直角坐标方程为,
由直线的参数方程(t为参数),消去得,
即直线的普通方程为.
(Ⅱ)点的直角坐标为,则点在直线上.
将直线的参数方程化为标准式(为参数),代入曲线的直角坐标方程,整理得,
直线与曲线交于两点,
,即.
设点所对应的参数分别为,
由韦达定理可得,
.
点在直线上,,
.
练习册系列答案
相关题目