题目内容

【题目】已知椭圆C)的一个焦点为,点C.

1)求椭圆C的方程;

2)过点且斜率不为0的直线l与椭圆C相交于MN两点,椭圆长轴的两个端点分别为相交于点Q,求证:点Q在某条定直线上.

【答案】1;(2)证明见解析.

【解析】

1)椭圆C的两焦点分别为,由,可求得的值,结合椭圆的定义,可求得的值,再结合,可求出的值,进而可得到椭圆C的方程;

2)设l方程为,联立,消去得到关于的一元二次方程,设,可表示出的方程,联立两直线方程,并结合韦达定理,可证明点Q在某条定直线上.

1)依题意,椭圆C的两焦点分别为

所以,即

,所以

故椭圆C的方程为.

2)设l的方程为

联立,得

,则

.

的方程为的方程为

联立两直线方程得

因为,所以

整理得.

故点Q在定直线.

练习册系列答案
相关题目

【题目】中国大学先修课程,是在高中开设的具有大学水平的课程,旨在让学有余力的高中生早接受大学思维方式、学习方法的训练,为大学学习乃至未来的职业生涯做好准备.某高中开设大学先修课程已有两年,两年共招收学生2000人,其中有300人参与学习先修课程,两年全校共有优等生200人,学习先修课程的优等生有60人.这两年学习先修课程的学生都参加了考试,并且都参加了某高校的自主招生考试(满分100分),结果如下表所示:

分数

人数

20

55

105

70

50

参加自主招生获得通过的概率

0.9

0.8

0.6

0.5

0.4

(1)填写列联表,并画出列联表的等高条形图,并通过图形判断学习先修课程与优等生是否有关系,根据列联表的独立性检验,能否在犯错误的概率不超过0.01的前提下认为学习先修课程与优等生有关系?

优等生

非优等生

总计

学习大学先修课程

没有学习大学先修课程

总计

(2)已知今年有150名学生报名学习大学先修课程,以前两年参加大学先修课程学习成绩的频率作为今年参加大学先修课程学习成绩的概率.

①在今年参与大学先修课程的学生中任取一人,求他获得某高校自主招生通过的概率;

②设今年全校参加大学先修课程的学生获得某高校自主招生通过的人数为,求.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

参考公式:,其中.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网