题目内容
如图,椭圆C0:
=1(a>b>0,a、b为常数),动圆C1:x2+y2=
,b<t1<a.点A1、A2分别为C0的左、右顶点,C1与C0相交于A、B、C、D四点.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240420123302575.jpg)
(1)求直线AA1与直线A2B交点M的轨迹方程;
(2)设动圆C2:x2+y2=
与C0相交于A′,B′,C′,D′四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A′B′C′D′的面积相等,证明:
为定值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042012299695.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042012315355.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240420123302575.jpg)
(1)求直线AA1与直线A2B交点M的轨迹方程;
(2)设动圆C2:x2+y2=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042012346360.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042012362454.png)
(1)
=1(x<-a,y<0).(2)见解析
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042012377679.png)
(1)解:设A(x1,y1),B(x1,-y1),又知A1(-a,0),A2(a,0),
则直线A1A的方程为y=
(x+a),①直线A2B的方程为y=
(x-a).②
由①②得y2=
(x2-a2).③由点A(x1,y1)在椭圆C0上,故
=1.
从而
=b2
,代入③得
=1(x<-a,y<0).
(2)证明:设A′(x2,y2),由矩形ABCD与矩形A′B′C′D′的面积相等,得4|x1||y1|=4|x2||y2|,故
.因为点A,A′均在椭圆上,所以b2![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042012518365.png)
=b2
.由t1≠t2,知x1≠x2,所以
=a2,从而
=b2,因此
=a2+b2为定值
则直线A1A的方程为y=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042012393554.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042012408554.png)
由①②得y2=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042012424636.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042012440732.png)
从而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042012455393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042012471763.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042012377679.png)
(2)证明:设A′(x2,y2),由矩形ABCD与矩形A′B′C′D′的面积相等,得4|x1||y1|=4|x2||y2|,故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042012502616.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042012518365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042012471763.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042012549875.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042012580481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042012596507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042012362454.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目