题目内容
已知椭圆
=1(a>b>0)的离心率为
,且过点P
,A为上顶点,F为右焦点.点Q(0,t)是线段OA(除端点外)上的一个动点,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240420090082780.jpg)
过Q作平行于x轴的直线交直线AP于点M,以QM为直径的圆的圆心为N.
(1)求椭圆方程;
(2)若圆N与x轴相切,求圆N的方程;
(3)设点R为圆N上的动点,点R到直线PF的最大距离为d,求d的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008945695.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008961369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008961720.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240420090082780.jpg)
过Q作平行于x轴的直线交直线AP于点M,以QM为直径的圆的圆心为N.
(1)求椭圆方程;
(2)若圆N与x轴相切,求圆N的方程;
(3)设点R为圆N上的动点,点R到直线PF的最大距离为d,求d的取值范围.
(1)
=1(2)
(3)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009179803.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009023750.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240420091641403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009179803.png)
(1)∵e=
不妨设c=3k,a=5k,则b=4k,其中k>0,故椭圆方程为
=1(a>b>0),∵P
在椭圆上,∴
=1解得k=1,∴椭圆方程为
=1.
(2)kAP=
,则直线AP的方程为y=-
x+4,
令y=t
,则x=
∴M
.∵Q(0,t)∴N
,
∵圆N与x轴相切,∴
=t,由题意M为第一象限的点,则
=t,解得t=
.∴N
,圆N的方程为
.
(3)F(3,0),kPF=
,∴直线PF的方程为y=
(x-3)即12x-5y-36=0,
∴点N到直线PF的距离为
,
∴d=![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009585398.png)
+
(4-t),∵0<t<4,
∴当0<t≤
时,d=
(6-5t)+
(4-t)=
,此时
≤d<
,
当
<t<4时,d=
(5t-6)+
(4-t)=
,此时
<d<
,
∴综上,d的取值范围为
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008961369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009210894.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008961720.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240420092571227.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009023750.png)
(2)kAP=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009304698.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009320370.png)
令y=t
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009335590.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009366539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009382832.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009382832.png)
∵圆N与x轴相切,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009366539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009366539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009476461.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009491783.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240420091641403.png)
(3)F(3,0),kPF=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009522412.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009522412.png)
∴点N到直线PF的距离为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240420095691566.png)
∴d=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009585398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009600468.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009616352.png)
∴当0<t≤
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009632380.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009585398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009616352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009678727.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009694377.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009710499.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009632380.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009585398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009616352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009772705.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009694377.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009803480.png)
∴综上,d的取值范围为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042009179803.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目