题目内容
【题目】在棱长均相等的正三棱柱ABCA1B1C1中,D为BB1的中点,F在AC1上,且DF⊥AC1,则下述结论:
①AC1⊥BC;
②AF=FC1;
③平面DAC1⊥平面ACC1A1,其中正确的个数为( )
A.0 B.1
C.2 D.3
【答案】C
【解析】选C.不妨设棱长为2。①连接AB1,则AB1=AC1=2,∴∠AC1B1≠90°,即AC1与B1C1不垂直,又BC∥B1C1,∴①错;②连接AD,DC1,在△ADC1中,AD=DC1=,而DF⊥AC1,∴F是AC1的中点,∴②对;由②知在△ADC1中DF=,连接CF,CD,易知CF=,而在Rt△CBD中,CD=,∴DF2+CF2=CD2,∴DF⊥CF,又DF⊥AC1,CF∩AC1=F,
∴DF⊥平面AA1C1C,∴③对,故选C.
练习册系列答案
相关题目
【题目】重庆市某厂党支部10月份开展“两学一做”活动,将10名党员技工平均分为甲,乙两组进行技能比赛.要求在单位时间内每个技工加工零件若干,其中合格零件的个数如下表:
1号 | 2号 | 3号 | 4号 | 5号 | |
甲组 | 4 | 5 | 7 | 9 | 10 |
乙组 | 5 | 6 | 7 | 8 | 9 |
(1)分别求出甲,乙两组技工在单位时间内完成合格零件的平均数及方差,并由此分析两组技工的技术水平;
(2)质检部门从该车间甲,乙两组中各随机抽取1名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过12件,则称该车间“质量合格”,求该车间“质量合格”的概率.